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A B S T R A C T   

Alzheimer’s disease (AD) is a typical senile degenerative disease that has received increasing attention world
wide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest 
neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early 
diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer’s disease 
(AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated 
on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) 
dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD 
dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, 
AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other 
five comparison methods. The method proposed in this paper can learn better feature subsets from serial 
multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect 
and will bring great convenience for clinicians to make better decisions in clinical diagnosis.   

1. Introduction 

Alzheimer’s disease (AD) is a typical senile degenerative disease. Its 
clinical symptoms include memory loss, mood changes, cognitive 
decline, difficulty speaking, writing, walking, etc. This disease is one of 
the important ones that endanger the health of the elderly at present [1]. 
At present, it affects more than 50 million people worldwide, and is 
expected to affect 150 million people by 2050. Since the pathogenic 
mechanism of AD has not been fully elucidated, there is currently no 
cure for AD in humans. One of the important reasons is that when the 
disease has not yet been detected, it has already progressed irreversibly, 
resulting in significant memory loss and neurological decline [2]. 
Generally speaking, the course of AD is divided into three stages: first, 
pre-symptomatic AD, then mild cognitive impairment (MCI), and 
finally, a gradual development into AD. Among them, MCI is often 
mistaken as a manifestation of normal aging and misses the best time for 
treatment. Therefore, early diagnosis of AD is crucial to delaying the 
disease, changing the disease process, or even preventing the disease 

through early intervention strategies [3]. 
In recent years, in the field of computer-aided diagnosis, many 

studies have carried out in-depth explorations of the disease. Most 
studies have adopted the combination of the dimension reduction 
method and an effective classifier to further improve the early diagnosis 
of AD. Y. Gharaibeh M et al. used different pre-training models to extract 
features: Inception V3 and DenseNet201. The PCA method is used to 
select features with 0.99 interpretation variance ratio, where the com
bination of selected features from two pre-training models is fed into the 
machine learning classifier, and the accuracy of Alzheimer’s disease 
classification is 99.14% [4]. Singh S et al. adopted a hybrid strategy of 
ant colony optimization (ACO) and feedforward convolution neural 
network (CNN or ConvNet), achieving an accuracy of 98.67% [5]. Pan D 
adopts an adaptive interpretable integrated model based on 3D convo
lution neural network (3DCNN) and genetic algorithm (GA), that is, 
3DCNN + EL + GA is used to distinguish AD and MCI, and the 
discriminative brain regions that are significantly helpful for classifi
cation are identified in a data-driven manner [6]. Velliangiri S et al. used 
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the depth feature reduction technology and the gradient face optimizer 
optimized dual support vector machine classifier (TSVM-GDO) to clas
sify AD diseases, which greatly improved the classification accuracy and 
greatly shortened the execution time [7]. Seo Jungryul et al. used a deep 
learning model combining multi-layer perceptron, SVM, and RNN and 
achieved an experimental accuracy rate of 70.97% [8]. 

The advantages of KNN are that it is user-friendly, easy to under
stand, interpretable, and has a high accuracy rate. The KNN method 
equally weighs the selected neighbors without considering their space 
with specific points [9]. Usually, we use a more advanced form of the 
KNN method. Keller introduces fuzzy sets to improve KNN and proposes 
a fuzzy K-nearest neighbor (FKNN). It applies fuzzy logic by assigning a 
certain degree of membership to groups based on the space of each 
k-nearest neighbor [10]. Since FKNN was proposed, it has been widely 
used in various classification task, and has been applied in many fields, 
such as biological and image data classification [11], face recognition 
[12], Parkinson’s disease diagnosis [13], tracking moving targets in 
videos [14], etc. Meanwhile, some researchers use meta-heuristics to 
solve practical problems, such as medical diagnosis [15,16], financial 
distress prediction [17], parameter extraction of solar cells [18], engi
neering design problems [19,20], feature selection [21,22], education 
prediction [23], PID control [24], wind speed prediction [25], rolling 
bearing fault diagnosis [26], gate resource allocation [27] and sched
uling problems [28], etc. When using FKNN to solve practical problems, 
there are two problems to deal with. On the one hand, proper kernel 
parameter settings play an important role in designing an effective SVM 
model. The first parameter, adaptively specified the neighborhood size 
k, and the second parameter, fuzzy intensity parameter m. On the other 
hand, choosing the optimal subset of input features also greatly affects 
the performance of the FKNN model. 

Feature selection is a commonly used dimensionality reduction 
method that refers to selecting a subset of attributes from the original set 
of attributes. Its main purpose is to identify important features, elimi
nate the irrelevance of unnecessary features, and build a good learning 
model. Feature selection greatly reduces the computational time of the 
induction algorithm and improves the accuracy of the resulting model. 
Feature selection can be divided into two categories: correlation-based 
filtered feature selection and search-based heuristic feature selection 
[29]. In recent years, algorithms inspired by nature have become very 
popular for solving various optimization problems. However, some meta 
heuristic algorithms proposed recently, for example, the monarch but
terfly optimization (MBO) [30], slime mould algorithm (SMA) [31], 
moth search algorithm (MSA) [32], hunger games search (HGS) [33], 
Runge Kutta method (RUN) [34], colony predation algorithm (CPA) 
[35], weighted mean of vectors (INFO) [36] and Harris hawks optimi
zation (HHO) [37], have also attracted the attention of many scholars. In 
this paper, the binary salp swarm algorithm(BSSA) is used to optimize 
the FKNN classifier and perform feature selection at the same time. The 
salp swarm algorithm (SSA) is a global optimization algorithm based on 
swarm intelligence that was proposed by Mirjalili et al., in 2017 [38]. 
The algorithm is simple and effective, and since it was proposed, it has 
been applied to various optimization tasks. 

The choice of dimensionality reduction method and classifier is of 
great significance for the early diagnosis of AD. The classifier based on 
FKNN has achieved excellent performance on disease diagnosis prob
lems such as the early diagnosis of AD [39] and thyroid disease diagnosis 
[40]. In summary, this paper proposes a FKNN feature selection method 
based on the improved binary salp swarm algorithm. First, the Cubic 
mapping method is used to initialize the population, so that the initial 
salp population covers the feasible region space more evenly; Secondly, 
the variable helix factor is introduced, which makes full use of the in
dividual’s opposite solution about the origin, reduces the number of 
individuals beyond the boundary, and ensures the algorithm has a 
detailed and flexible search ability. Finally, the best and the worst in
dividuals are selected for the updated individuals to carry out dimen
sional random difference mutation. In order to further study the role of 

this method in dealing with practical problems, this paper discretizes it 
into binary ISSA (IBSSA) and applies it to feature selection with the goal 
of finding the optimal feature subset. On the one hand, on the datasets of 
BreastCancer, glass, hepatitisfulldata, Lymphography, and WDBC data
sets obtained from the UCI Machine Learning Repository, the effec
tiveness of this method is tested in terms of classification accuracy, 
sensitivity, and specificity, and other indicators. On the other hand, in 
order to verify the effectiveness of this method in the diagnosis of early 
AD, we used MRI, PET, and CSF multimodal feature data from the in
ternational Alzheimer’s disease neuroimaging initiative (ADNI) and 
compared them with other methods, which are swarm intelligence al
gorithms combined with a FKNN classifier. The experimental results 
show that the IBSSA-FKNN method can effectively improve the classi
fication performance and the performance of early AD diagnosis. It has a 
good application prospect and will bring great convenience for clini
cians to make better decisions in clinical diagnosis. 

The rest of this paper is organized as follows: Section 2 introduces the 
FKNN classifier; Section 3 introduces the salp swarm algorithm and the 
binary salp swarm algorithm; Section 4 introduces the classification 
method proposed in this paper, namely IBSSA-FKNN; Section 5 conducts 
experiments and results analysis on traditional datasets; and Section 6 
conducts experiments and results analysis on sMRI datasets. Finally, 
Section 7 discusses the conclusions and introduces the prospects for 
future work. 

2. Background materials 

2.1. Fuzzy K-nearest neighbors(FKNN) 

KNN is one of the simplest classifiers. For the samples to be classified, 
KNN determines the sample class as the pattern of the neighbor’s class 
according to the k neighbors closest to the sample. However, this 
method defaults to assuming that each sample has the same weight and 
has only one class, which is not the case in reality. In order to solve these 
two problems, Keller introduced fuzzy set theory into KNN and proposed 
the FKNN algorithm. In FKNN, each sample now belongs to multiple 
classes with different membership degrees, and no longer belongs to 
only one class. Furthermore, FKNN assigns different weights to each 
neighbor according to the distance between samples. Simply put, 
neighbors with similar distances have greater weight in determining the 
class than those with farther distances. In FKNN, the fuzzy membership 
of samples is assigned to different classes according to the following 
formula: 

ui(x)=

∑k

j=1
uij
(
1
/⃦
⃦x − xj

⃦
⃦2/(m− 1))

∑k

j=1

(
1
/⃦
⃦x − xj

⃦
⃦2/(m− 1))

(1)  

where i = 1, 2,…,C, j = 1, 2,…, k, the number of classes is C, and the 
number of nearest neighbors is K. When calculating the contribution of 
each neighbor to the membership value, the fuzzy intensity parameter m 
is used to determine the weight of the distance, and its value is usually 
chosen as m ∈ (1, ∞). 

⃦
⃦x − xj

⃦
⃦ is the distance between x and its j-th 

nearest neighbor xj, Euclidean distance is usually chosen as the distance 
metric. uij is the membership degree of pattern xj from the training set to 
class i, in the k nearest neighbors of x. In this study, we adopted con
strained fuzzy membership, that is, we find the k nearest neighbors of 
each training pattern (such as xk), and the membership of xk in each 
class is assigned as: 

uij(xk)=

{
0.51 +

(
nj
/

k
)
× 0.49, if j = i(

nj
/

K
)
× 0.49, if j ∕= i (2) 

The value nj is the number of neighbors found belonging to the j-th 
class. Note that the membership calculated by equation (2) should meet 
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the following equation: 

∑C

i=1
μij = 1, j = 1, 2,…, n,

0 <
∑n

j=1
uij < n,

uij ∈ [0, 1]

(3) 

After calculating all memberships of the query sample, assign it to 
the class with the highest membership value, that is: 

C(x)= argmaxC

i=1
(ui(x)) (4) 

The steps of FKNN are as follows.  

1) Calculate the membership degree of all training samples for each 
category by eq. (2); 

2) For the test sample, find its K nearest neighbors by distance mea
surement, and calculate the membership degree of the test sample for 
each class by Eq. (1);  

3) Get the predicted label by Eq. (4). 

2.2. Salp swarm algorithm (SSA) 

Salp Swarm Algorithm (SSA) is a global optimization algorithm 
based on swarm intelligence that was proposed by Mirjalili et al., in 
2017 [38]. The salp is a kind of marine creature with body tissue and a 
movement mode highly similar to jellyfish, and it is a kind of capsule 
animal that can float freely. In the chain-like group behavior of salps, 
individuals usually connect head to tail to form a “chain” and move in 
sequence. In the salp chain, divided into leaders and followers, the 
leader moves towards the food and guides the movement of the fol
lowers who follow them. According to the strict “hierarchy” system, the 
movement of the followers is affected only by the previous step. Such a 
movement mode makes the salps chain have a strong ability for global 
exploration and local development. 

Population initialization: Let the search space be the Euclidean space 
of D× N, D is the space dimension, and N is population number. The 
position of the salps in space is denoted by Xn = [Xn1,Xn2,Xn3,⋯,XnD]

T, 
the position of the food is denoted by Fn = [Fn1, Fn2, Fn3,⋯, FnD]

T, n =

1, 2, 3,⋯,N.The upper bound of the search space is ub = [ub1,ub2,ub3,⋯,

ubj,⋯,ubD],and the lower bound is lb = [lb1, lb2, lb3,⋯, lbj,⋯, lbD], j =

1, 2, 3,⋯,D. 

XD×N = rand(D,N) ⋅ (ub − lb) + lb (5) 

Leaders in the population are represented by Xl
d, followers are rep

resented by Xi
d, i = 1, 2,3.4,⋯N; d = 1, 2,3,⋯D. 

Leader position update: During salp chain movement and foraging, 
the leader’s position update is expressed as: 

xl
d =

{
Fd + c1((ub − lb)c2 + lb), c3 ≥ 0.5
Fd − c1((ub − lb)c2 + lb), c3 < 0.5 (6)  

where Xl
d and Fd are the position of the first salp (leader) and the position 

of food in the d-th dimension, respectively; ub and lb are the corre
sponding upper and lower bounds, respectively. where c1, c2, and c3 are 
control parameters. 

Equation (2) shows that the leader’s location update is only related 
to the location of the food. c1 is the convergence factor in the 

optimization algorithm, which plays the role of balancing global 
exploration and local development, and is the most important control 
parameter in SSA. The expression of c1 is: 

c1 = 2e
−

(

4l
L

)2

(7)  

where l is the current iteration number; L is the maximum iteration 
number. The convergence factor is a decreasing function of 2–0. 

The control parameters c2 and c3 are random numbers of [0,1], 
which are used to enhance the randomness of Xl

d and improve the global 
search and individual diversity of the chain groups. 

Followers position update: in the process of movement and foraging 
in the salp chain, the followers move forward in a chain-like manner 
through the mutual influence between the front and rear individuals. 
Their displacement conforms to Newton’s law of motion, and their 
motion displacement is: 

X =
1
2

at2 + v0t (8)  

where t is the time; a is the acceleration, the formula is a = (vfinal −

v0)/t; v0 is the initial velocity, and vfinal = (Xi
d − Xi− 1

d )/t. 
Considering that t is iterative in the optimization algorithm, let t = 1 

and v0 = 0 in the iterative process. Then formula (4) can be expressed as: 

X =
Xi

d − Xi− 1
d

2
(9)  

where i ≥ 2; Xi
d and Xi− 1

d are the positions of two salps that are closely 
connected to each other in the d-th dimension, respectively. Therefore, 
the position of the follower is expressed as: 

Xi′

d =
Xi

d + Xi− 1
d

2
(10)  

where Xi′
d and Xi

d are the updated follower’s position and the pre-update 
follower’s position in the d-th dimension, respectively. 

Fig. 1. Cubic mapping when ρ = 2.59， x0 = 0.3.  
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The pseudocode of the SSA algorithm is as follows. 

Algorithm 1. Salp Swarm Algorithm   

3. Improved binary salp swarm algorithm (IBSSA) 

3.1. Population initialization strategy based on cubic chaotic map 

Chaotic sequences have the advantages of easy implementation, 
short execution time, and being able to jump out of the local optimal 
value, so they are widely used in random based optimization algorithms. 
Lyapunov exponent is often used to judge the dynamic performance of 
the system. The larger the value, the higher the degree of chaos. FENG 
et al. analyzed the best chaotic sequences generated by 16 common 
chaotic maps [41], and the results showed that the running time of cubic 
chaotic map is short, and the lyapunov exponent is close to the optimal 
value. In this paper, cubic chaotic map is used to optimize the initial 
solution and improve the search efficiency. 

The expression of the standard Cubic chaotic mapping function is: 

xn− 1 =αx3
n − βxn (11)  

where, α and β are chaos influencing factors, and the range of Cubic 
maps with different α and β values is different. Generally, when β ∈

(2.3,3), the sequence generated by Cubic mapping is chaotic. 
In addition, when α = 1, xn ∈ ( − 2,2). when α = 4, xn ∈ ( − 1, 1). To 

make xn ∈ (0,1), the Cubic mapping used in the improved algorithm is 
in the following form: 

xn+1 = ρxn
(
1 − x2

n

)
, xn ∈ (0, 1) (12)  

where, ρ is the control parameter. Chaos of Cubic map is closely related 
to the value of parameter ρ. Here, take the initial value x0 = 0.3, and the 
number of iterations is 10000. The simulation results of Cubic mapping 
are shown in Fig. 1. 

It can be seen from the figure that when ρ = 2.59, Cubic map is a full 
map between (0,1) and has the best chaotic ergodicity. 

3.2. Binary mechanism 

In practice, according to the different types of solutions, it can be 
divided into continuous solution space and discrete solution space, 
while the standard Salp Swarm Algorithm can only use the position 

vector in the continuous domain to move around the search space. The 
transformation between the continuous solution space and the discrete 
solution space can be discretized through a specific transformation 
function, generally using a sigmoid transformation function. At the same 
time, the position of the salps may stay at some local points and remain 
unchanged when the value is large. To avoid this weakness, the sigmoid 
transformation function is used here [42]. Use the particle’s velocity 
probability to change the position of an element. 

S
(

xi
j(t)

)
=

1
1 + exp

(
− xi

j(t)
) (13)  

where xi
j(t) is the velocity of the i-th individual in the j-th dimension at 

time t; S(xi
j(t)) is the transformation probability that the position xi

j(t)
takes 1 or 0. 

After calculating the transition probability, the following equation 
(10) needs to be used to update the position of the salps: 

xi
j(t)=

⎧
⎨

⎩

1, rand ≥ S
(

xi
j(t)

)

0, rand < S
(

xi
j(t)

) (14)  

where xi
j(t) is the position of the i-th salps in the j-th dimension at time t. 

Xmax is selected as the maximum position value to limit the range of xi
j(t), 

that is, xi
j(t) ∈ [ − Xmax,Xmax], and also limit the probability that the po

sition xi
j(t) is converted to 1 or 0. 

3.3. Follower position updating strategy based on the variable helix 
mechanism 

The location update of the i-th follower of the thallus group algo
rithm is determined by the location coordinates of the i-th and i-1 
thallus, and this location update rule is only determined by the positions 
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of the previous individual and the current individual in the thallus chain, 
Therefore, the updated thimbles are highly dependent on the leader 
individuals of the previous update, which easily limits the global search 
ability and local search speed of the algorithm. To solve the above 
problems, the variable helix factor is introduced, which makes full use of 
the individual’s opposite solution about the origin, reduces the number 
of individuals beyond the boundary, and ensures the algorithm has a 
detailed and flexible search ability. 

The variable helix factor is calculated as follows: 

H = a⋅cos(k ⋅ l ⋅ π) (15)  

a=

⎧
⎪⎨

⎪⎩

1, t <
M
2

e5⋅l, otherwise
(16)  

l= 1 − 2⋅
t

M
(17)  

where, H represents variable helix factor; a is the parameter used to 
control the spiral. The early iteration value is close to 1, and the later 
iteration value gradually decreases; k is the parameter representing the 
spiral cycle, and the value is M/10; l is a parameter that decreases lin
early from 1 to - 1 as the number of iterations increases. 

The improvement of the follower’s extensive search enables the 
follower to make full use of the entire search space, more easily get rid of 
the attraction of the local optimal solution, strengthen the search of the 
entire space, maintain the diversity of the population, enhance the early 
algorithm exploration ability, and improve the later algorithm devel
opment ability. Based on this, the follower formula is updated as follows: 

xi′

d =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
⋅cos(a⋅l⋅π)⋅

(
xi

d + xi− 1
d

)
, t <

M
2

1
2

⋅e5⋅l⋅cos(a⋅l⋅π)⋅
(
xi

d + xi− 1
d

)
, t >

M
2

(18)  

3.4. Dimensional random difference mutation 

Use random difference mutation to carry out dimensional mutation, 
and obtain a new individual dimension through this mutation. The 
specific formula is as follows. 

xi
j = r1 ×

(
Fj − xi

j

)
+ r2 ×

(
x′

j − xi
j

)
(19) 

Among them, xi
j is the j-th dimension of the i-th individual in the salps 

group; Fj is the j-th dimension of food source location; x′

j is the j-th 
dimension of a random individual in the population; r1 and r2 are 
random numbers of [0,1]. After the population location update is 
completed, use the dimension-by-dimension random differential muta
tion to mutate each dimension of the individual, and evaluate a certain 
dimension after it mutates. If it is excellent, retain the solution after the 
mutation. If the evaluation result after the mutation becomes poor, 
discard the poor dimension information, reduce the interference be
tween each dimension, and increase the search scope. Due to the 
blindness of mutation operation, the search efficiency of the algorithm 
will be reduced and the calculation amount will be greatly increased if 
all individuals are subjected to dimensional random differential muta
tion. Therefore, only the best and worst individuals in the population are 
selected for mutation. The best individual mutation can improve the 
search efficiency, and the worst individual mutation can improve the 
search range and jump out of the local optimal solution. 

4. Proposed IBSSA-FKNN model 

On the one hand, in FKNN, the distance weights of k neighbors are 
calculated based on distance measures, without distinguishing the 
importance of features and without taking into account the impact of 

different distances from different neighbors to the center of the sample 
class. FKNN needs to get the distance from all training set samples to get 
its k neighbors, resulting in a large amount of computation. In view of 
the problems existing in FKNN, many scholars have studied and 
improved it, mainly aiming at some parameter selection or optimization 
problems involved in this algorithm. These improved methods have 
improved accuracy and reliability to a certain extent, but still have 
shortcomings. On the other hand, SSA has strong optimization ability 
and high optimization accuracy. But for complex problems, they will 
also fall into local extremum. Therefore, first, the Cubic mapping 
method is used to initialize the population, so that the initial salp pop
ulation covers the feasible region space more evenly; Secondly, the 
variable helix factor is introduced, which makes full use of the in
dividual’s opposite solution about the origin, reduces the number of 
individuals beyond the boundary, and ensures the algorithm has a 
detailed and flexible search ability. Finally, the best and the worst in
dividuals are selected for the updated individuals to carry out dimen
sional random difference mutation. In order to further study the role of 
this method in dealing with practical problems, this paper discretizes it 
into binary ISSA (IBSSA) and applies it to feature selection with the goal 
of finding the optimal feature subset. 

In this section, we use the IBSSA algorithm for feature selection to the 
original FKNN and create a model called IBSSA-FKNN. The main goal of 
this model is to optimize the FKNN classifier: (1) determine the number 
of the nearest neighbors k and the fuzzy strength parameter m;(2) 
identify the best subset of discriminative features and feature selection. 
The appropriate feature subset obtained is used as input to the optimized 
FKNN model for classification. The IBSSA-FKNN method takes diag
nostic accuracy as the fitness of feature selection. The IBSSA-FKNN 
flowchart of the overall architecture of the proposed model is shown 
in Fig. 2. 

A flag vector for feature selection is shown in Fig. 3. The vector 

X

X

k m

k m

k m

Fig. 2. Flowchart of the proposed IBSSA-FKNN diagnostic system.  

D. Lu et al.                                                                                                                                                                                                                                       



Computers in Biology and Medicine 159 (2023) 106930

6

consisting of a series of binary values of 0 and 1 represents a subset of 
features, that is, an actual feature vector, which has been normalized. 
For a problem with D dimensions, there are D bits in the vector. The i-th 
feature is selected if the value of the i-th bit equals one; otherwise, this 
feature will not be selected (i = 1, 2, …., D). The size of a feature subset is 
the number of bits, whose values are one in the vector. The pseudocode 
of the IBSSA algorithm is presented as shown in Algorithm 2. 

Algorithm 2. Pseudo-code for feature selection procedure   

After the parameter pair and feature subset were obtained, the FKNN 
model began to perform the classification tasks. At first, the FKNN 
trained on reduced the training feature space using the parameter pair to 
evolve an optimal model, and then the optimal FKNN model was 
employed to predict the new samples on the reduced testing feature 
space. The whole process was done via the 10-fold CV analysis, and 
finally the average results over 10 folds were computed. The detailed 
pseudo-code for the classification phase is as follows. 

Algorithm 3. Pseudo-code f or the classification procedure 

5. Traditional data set experiment 

5.1. Dataset description 

In order to verify the effectiveness of the proposed method, this 
section conducts experiments on the SSA-FKNN method on 5 classifi
cation datasets, which are BreastCancer, glass, hepatitisfulldata, 
Lymphography, WDBC. The datasets are from the UCI Machine Learning 
Repository (http://archive.ics.uci.edu/ml/datasets). Among them, the 
BreastCancer dataset has 699 data, including 9 features and 2 categories; 

the grass dataset has 214 data, including 10 features and 2 categories; 
the hepatitisfulldata dataset has 155 data, including 20 features and 2 
categories; Lymphography dataset has 148 data, including 18 features 
and 4 categories; WDBC dataset has 569 data, including 30 features and 
2 categories. The specific description information of the dataset is shown 
in Table 1. 

Before the experiment, the data needs to be preprocessed first. Since 
the BreastCancer data set has the missing features, in order to ensure the 
integrity of the sample data, the average value of these records is pro
cessed in this experiment. At the same time, in order to reduce the dif
ference between the eigenvalues and prevent the larger eigenvalues 
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from excessively affecting the smaller eigenvalues, we normalize each 
eigenvalue to the [-1,1] interval. The normalized calculation formula is: 

x
′

=

(
x − mina

maxa − mina

)

∗ 2 − 1 (20)  

where x is the original value of the data, x′ is the normalized value, maxa 
is the maximum value in feature a, and mina is the minimum value in 
feature a. 

5.2. Experimental setup and description 

The proposed IBSSA-FKNN method is implemented on the MAT
LAB2018b platform. This experiment is performed on an NVIDIA 
GeForce GTX 1660 with Windows 10 as the operating system. The 
detailed parameters of IBSSA-FKNN are set as follows: the number of 
populations is 20, and the maximum number of iterations is set to 1000. 
In order to verify the effectiveness of the improved IBSSA algorithm in 
feature selection, a total of 5 comparison algorithms are set up for 
comparison, which are Binary Bat Algorithm (BBA) [43], Binary Moth 
Flame Optimizer (BMFO) [44], Quantum Gaussian Dragonfly Algorithm 
(QGDA) [45], Binary Quantum Grey Wolf Optimization Algorithm 
(BQGWO) [46], Binary Spread Strategy with the Chaotic Local Search 
Grey Wolf Optimization (BSCGWO) [47]. The parameter settings of the 
contrast group intelligent optimization algorithm involved in this paper 
are shown in Table 3. 

The experiments are mainly carried out by using the wrapped feature 
selection method. During the experiments, the IBSSA algorithm is used 
to generate feature subsets, and the resulting feature subsets are eval
uated using the results obtained by the FKNN classifier. In the feature 
selection process, the IBSSA algorithm realizes the search through a ten- 
fold cross-validation strategy and applies it to practical problems 

through the KNN model. K-fold cross-validation is mainly used to obtain 
an unbiased estimate of generalization accuracy. If K is set to 10, the 
data set is divided into 10 subsets, one of which is taken as the test set, 
and the remaining part is taken as the training set. Then, the average 
error of all 10 tests is calculated. During the implementation of the K- 
fold cross-validation strategy, all test sets are independent, and rela
tively stable and reliable results can be obtained. In addition, this section 
uses the IBSSA algorithm to generate the optimal feature subset on the 
training set and then uses the validation dataset filtered by the optimal 
feature subset to classify using the FKNN classifier to obtain the final 
result. In subsequent experiments, the best results of the evaluation in
dicators have been bolded in the table. 

5.3. Evaluation criteria 

Evaluate the classification performance of this method, which are 
classification Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Pre
cision(PRE), F-measure. Defined as follows: 

Accuracy is the proportion of the total number of correct predictions. 
Use the following methods to determine: 

ACC =
TP + TN

TP + TN + FN + FP
× 100% (21) 

Sensitivity is an index used to measure the classifier’s recognition of 
abnormal records, and is also often expressed as the TP rate. 

SEN =
TP

TP + FN
× 100% (22) 

Specificity is often used to estimate the ability of a classification 
model to identify normal examples, which is also often expressed as the 
TN rate. 

SPE =
TN

TN + FP
× 100% (23) 

Precision is the correct proportion of positive instances of prediction, 
as calculated using: 

Table 2 
Parameter setting of swarm intelligence optimization algorithm.  

Algorithm Parameters 

BBA [fmin , fmax ] = [0,2]; A = 0.5; r = 0.5; α = 0.95; γ = 0.05 
BMFO b = 1 
BQGWO a = 2 − FEs× (2 /MaxFEs); r1 = r2 = rand(0,1); A = 2× a× r1; C =

2× r2; β = ω = 10 
BSCGWO a = 2 − FEs× (2 /MaxFEs); r1 = r2 = rand(0,1); A = 2× a× r1; C =

2× r2; β = a ∗ rand(0,1)
IBSSA 

c1 = 2× e
− (

4 × FEs
MaxFEs

)2

; c2 = c3 = rand(0,1); ρ = 2.59; x0 = 0.3  

Table 3 
The detailed results of the IBSSA-FKNN model on the BreastCancer dataset.  

Runs of 10- 
fold CV 

ACC SEN SPE PRE No.of selected 
feature 

#1 1 1 1 1 4 
#2 1 1 1 1 4 
#3 1 1 1 1 4 
#4 0.98571 1 1 0.97872 4 
#5 1 1 0.95833 1 4 
#6 1 1 1 1 4 
#7 1 1 1 1 3 
#8 0.98571 0.97826 1 1 3 
#9 0.98551 0.97778 1 1 4 
#10 0.97183 0.95652 1 1 5 
Mean 0.9928 0.9913 0.9958 0.9979 3.9  

Table 4 
The detailed results of the IBSSA-FKNN model on the glass dataset.  

Runs of 10-fold CV ACC SEN SPE PRE No.of selected feature 

#1 0.95238 0 0 0.95238 3 
#2 0.85 0 0 0.85 3 
#3 0.90476 0 0 0.90476 4 
#4 0.80952 0 0 0.80952 3 
#5 0.90909 0 0 0.90909 3 
#6 0.95 0 0 0.95 4 
#7 0.86957 0 0 0.86957 0 
#8 0.90909 0 0 0.90909 0 
#9 0.78261 0 0 0.78261 4 
#10 0.90476 0 0 0.90476 6 
Mean 0.8842 0 0 0.8842 3  

Table 1 
Detailed description of the dataset.  

NO. dataset number of 
categories 

number of 
samples 

number of 
features 

is there a 
missing 
value 

1 BreastCancer 2 699 9 yes 
2 glass 2 214 10 no 
3 hepatitisfulldata 2 155 20 no 
4 Lymphography 4 148 18 no 
5 WDBC 2 569 30 no  

Fig. 3. A flag vector for feature selection.  
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PRE =
TP

TP + FP
× 100% (24) 

Among them, TP (True Positive), FP (False Positive), TN (True 
Negative) and FN (False Negative) represent true positive, false positive, 
true negative and false positive, respectively. 

Table 5 
The detailed results of the IBSSA-FKNN model on the hepatitisfulldata dataset.  

Runs of 10-fold CV ACC SEN SPE PRE No.of selected feature 

#1 1 1 1 1 2 
#2 1 1 1 1 5 
#3 1 1 1 1 4 
#4 1 1 1 1 2 
#5 1 1 1 1 2 
#6 1 1 1 1 3 
#7 1 1 1 1 3 
#8 1 1 1 1 5 
#9 1 1 1 1 4 
#10 1 1 1 1 1 
Mean 1 1 1 1 3.1  

Table 6 
The detailed results of the IBSSA-FKNN model on the Lymphography dataset.  

Runs of 10-fold CV ACC SEN SPE PRE No.of selected feature 

#1 1 0 0 1 4 
#2 0.9375 0 0 0.9375 3 
#3 1 0 0 1 3 
#4 1 0 0 1 7 
#5 1 0 0 1 7 
#6 1 0 0 1 7 
#7 1 0 0 1 3 
#8 1 0 0 1 6 
#9 0.92857 0 0 0.92857 3 
#10 1 0 0 1 8 
Mean 0.9866 1 1 0.9866 5.1  

Table 7 
The detailed results of the IBSSA-FKNN model on the WDBC dataset.  

Runs of 10-fold CV ACC SEN SPE PRE No.of selected feature 

#1 0.98276 0.95455 1 1 13 
#2 1 1 1 1 5 
#3 1 1 1 1 9 
#4 1 1 1 1 2 
#5 0.98246 1 1 1 2 
#6 1 1 1 1 6 
#7 1 1 1 1 8 
#8 1 1 1 1 3 
#9 1 1 1 1 4 
#10 1 1 1 1 3 
Mean 0.9965 0.9955 1 1 5.5  

Table 8 
Experimental results of six methods on the BreastCancer dataset.  

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F- 
measure 
(%) 

IBSSA- 
FKNN 

3.3 0.9929 0.9913 0.9958 0.9979 0.9945 

BBA-FKNN 3.8 0.9411 0.9453 0.9333 0.9650 0.9543 
BMFO- 

FKNN 
3.6 0.9871 0.9847 0.9917 0.9957 0.9901 

QGDA- 
FKNN 

3.6 0.9872 0.9847 0.9920 0.9957 0.9901 

BQGWO- 
FKNN 

4.1 0.9885 0.9913 0.9833 0.9914 0.9913 

BSCGWO- 
FKNN 

3.4 0.9857 0.9869 0.9833 0.9914 0.9890  

Table 9 
Experimental results of six methods on the glass dataset.  

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F-measure 
(%) 

IBSSA- 
FKNN 

3 0.8842 0 0 0.8842 0 

BBA-FKNN 4.2 0.6856 0 0 0.6856 0 
BMFO- 

FKNN 
3.7 0.8788 0 0 0.8788 0 

QGDA- 
FKNN 

4.3 0.8773 0 0 0.8773 0 

BQGWO- 
FKNN 

3.9 0.8595 0 0 0.8595 0 

BSCGWO- 
FKNN 

3.7 0.8744 0 0 0.8744 0  

Table 10 
Experimental results of six methods on the hepatitisfulldata dataset.  

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F- 
measure 
(%) 

IBSSA- 
FKNN 

3.1 1 1 1 1 1 

BBA-FKNN 8.2 0.8410 0.6417 0.8949 0.6683 0.6309 
BMFO- 

FKNN 
7.6 1 1 1 1 1 

QGDA- 
FKNN 

3.6 1 1 1 1 1 

BQGWO- 
FKNN 

3.9 0.9875 0.9750 0.9923 0.9750 0.9714 

BSCGWO- 
FKNN 

3.7 0.9933 0.9667 1 1 0.9800  

Table 11 
Experimental results of six methods on the Lymphography dataset.  

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F-measure 
(%) 

IBSSA- 
FKNN 

5.1 0.9866 0 0 0.9866 0 

BBA-FKNN 7.1 0.8268 0 0 0.8268 0 
BMFO- 

FKNN 
6.7 0.9749 0 0 0.9749 0 

QGDA- 
FKNN 

5.7 0.9799 0 0 0.9799 0 

BQGWO- 
FKNN 

4.5 0.9804 0 0 0.9804 0 

BSCGWO- 
FKNN 

4 0.9518 0 0 0.9518 0  

Table 12 
Experimental results of six methods on the WDBC dataset.  

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F- 
measure 
(%) 

IBSSA- 
FKNN 

5.5 0.9965 0.9955 1 1 0.9953 

BBA-FKNN 10 0.9474 0.9288 0.9583 0.9353 0.9297 
BMFO- 

FKNN 
12.5 0.9965 0.9952 0.9972 0.9955 0.9952 

QGDA- 
FKNN 

5.7 0.9982 0.9952 0.9972 0.9955 0.9977 

BQGWO- 
FKNN 

4.1 0.9948 0.9907 0.9972 0.9952 0.9930 

BSCGWO- 
FKNN 

4.3 0.9947 0.9859 1 1 0.9928  
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Lewis and Gale proposed the F-measure in 1994, which is defined as 
follows: 

F − =

(
β2 + 1

)
∗ Pr ecision ∗ Sensitivity

β2 ∗ Pr ecision + Sensitivity
(25)  

In Equation (25) above, there is a value from 0 to infinity to control the 
weights assigned to the precision and sensitivity. If all positive instances 
are classified incorrectly, any classifier evaluated using the above will 
have a metric of 0. In this experiment, the β value was set to 1. 

5.4. Experimental results 

Table 3, 4, 5, 6, and 7 show the comparison of the results of the 
IBSSA-FKNN algorithm performing 10 times of 10-fold cross-validation 
on 5 datasets, respectively. The performance evaluation criteria include 
training classification Accuracy (ACC), Sensitivity (SEN), Specificity 
(SPE), precision(PRE) and number of feature selection. As can be seen 
from Table 3, the experimental results of the IBSSA-FKNN method on the 
BreastCancer dataset are recorded in detail. During the 10-fold opera
tion, the average values of the five evaluation indicators are 0.9928, 
0.9913, 0.9958, 0.9979 and 3.9, respectively. Similarly, it can be seen 
from Table 4 that the experimental results of the IBSSA-FKNN method 
on the glass dataset are recorded in detail. During the 10-fold operation, 
the average values of the five evaluation indicators are 0.8842, 0, 0, 
0.8842 and 3, respectively. It can be seen from Table 5 that the exper
imental results of the IBSSA-FKNN method on the hepatitisfuldata 
dataset are recorded in detail. During the 10-fold operation, the average 
values of the five evaluation indicators are 1, 1, 1, 1 and 3.1, respec
tively. It can be seen from Table 6 that the experimental results of the 
IBSSA-FKNN method on the Lymphagraphy data set are recorded in 
detail. During the 10-fold operation, the average values of the five 
evaluation indicators are 0.9866, 1, 1, 0.9866 and 5.1, respectively. It 
can be seen from Table 7 that the experimental results of the IBSSA- 
FKNN method on WDBC dataset are recorded in detail. During the 10- 
fold operation, the average values of the five evaluation indicators are 
0.9965, 0.9955, 1, 1 and 5.5, respectively. 

This section compares the IBSSA algorithm with other 5 

Fig. 4. The frequency of selected features in 10-fold CV on the BreastCancer 
data set. 

Fig. 5. The frequency of selected features in 10-fold CV on the glass data set.  

Fig. 6. The frequency of selected features in 10-fold CV on the hepatitisfulldata 
data set. 

Fig. 7. The frequency of selected features in 10-fold CV on the Lymphography 
data set. 

Fig. 8. The frequency of selected features in 10-fold CV on the WDBC dataset.  
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metaheuristic optimization algorithms on 5 different datasets to test its 
performance on feature selection problems. Tables 8–12 record the 
mean values of the selected feature length, classification accuracy, 
sensitivity, specificity, precision, and F-measure obtained by the BMFO, 
BBA, QGDA, BQGWO, BSCGWO, and IBSSA algorithms under the 
experiment of 10-fold crossover. 

It can be seen from the experimental results in Tables 8–12 that for 
the IBSSA algorithm, only in the BreastCancer dataset, the sensitivity 
index is slightly inferior to other algorithms. On the four datasets, 
including grass, the algorithm achieves the best selected feature length, 
classification accuracy, sensitivity, specificity, precision, and F-measure. 
For example, on the BreastCancer dataset, the IBSSA algorithm obtained 
the optimal average number of feature selection 3.3, the optimal average 
classification accuracy 99.29%, the optimal average sensitivity 99.13%, 
the optimal average specificity 99.58%, the optimal average precision 
99.79%, and the optimal average F-measure 99.45%. Experimental re
sults show that the IBSSA algorithm improves the classification accu
racy, sensitivity, specificity, precision, and F-measure of feature subsets 
to a certain extent. It is worth noting that although this algorithm does 
not perform very well in improving classification accuracy, they have a 
better performance in reducing the data dimension. 

In order to explore how many and which features are selected in the 
feature selection process, we further conduct experiments on 5 datasets 
to investigate the details of the feature selection mechanism of the salp 
swarm optimization algorithm. Figs. 3–7 show the statistical diagram of 
the number of times each feature value is selected in the 10-fold cross- 
validation experiment of the IBSSA-FKNN method. From these figures, 
we can find that some features are selected more times, while some 
features are selected less times. 

The 10-fold selection features in the BreastCancer dataset are shown 
in Fig. 4. The original number of features in the BreastCancer dataset is 
9. After feature selection, not all features are selected for classification. 
The average number of selected features for the IBSSA-FKNN method is 
3.3, and its most important features are F1, F3, F4, F7, i.e. bundle 

thickness, cell shape uniformity, edge adhesion, and chromatin, which 
have been selected more than 5 times, so we think that these features can 
be used as a reference for distinguishing breast cancer, which can be 
found in the selection feature’s 10-fold CV. 

The 10-fold selection features in the glass dataset are shown in Fig. 5. 
The original number of features in the glass dataset is 9. After feature 
selection, not all features are selected for classification. The average 
number of selected features of the IBSSA-FKNN method is 3.6, and its 
most important features are F1, F4, F6, F7, and F8, all of which have 
been selected more than 4 times or more, so we think that these features 
can be used as a reference for distinguishing. It can be found in the se
lection feature’s 10-fold CV. 

The 10-fold selection features in the hepatitisfulldata dataset are 
shown in Fig. 6. The original feature number in the hepatitisfulldata 
dataset is 19. After feature selection, not all features are selected for 
classification. The average number of selected features of the IBSSA- 
FKNN method is 3.3, and its most important features are F1, F2, F3, 
and F11, all of which have been selected more than 3 times or more, so 
we think that these features can be used as a reference for distinguishing, 
which can be found in the selection feature’s 10-fold CV. 

The 10-fold selection features in the Lymphography dataset are 
shown in Fig. 7. The original number of features in the Lymphography 
dataset is 17. After feature selection, not all features are selected for 
classification. The average number of selected features of the IBSSA- 
FKNN method is 3.6, and its most important features are F2, F7, F11, 
F13, and F14, all of which have been selected more than 4 times or more, 
so we think these features can be used as a reference for distinguishing. 
It can be found in the selection feature’s 10-fold CV. 

The 10-fold selection features on the WDBC dataset are shown in 
Fig. 8. The original number of features on the Wdbc dataset is 29. After 
feature selection, not all features are selected for classification. The 
average number of selected features of the IBSSA-FKNN method is 4.3, 
and its most important features are F1, F2, F3, F14, F17, F21, F24, which 
are all selected more than 3 times or more, so we think these features can 
be used as a reference for distinguishing. It can be found in the selection 
feature’s10-fold CV. 

6. sMRI dataset experiment 

6.1. Dataset description 

The experimental data are obtained from the international Alz
heimer’s disease neuroimaging initiative (ADNI) database (http://adni. 
loni.usc.edu/). ADNI was established in 2003 by the National Institute 
on Aging (NIA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), the Food and Drug Administration (FDA), 

Fig. 9. Comparison of time consumption of different methods.  

Table 13 
Subject information(mean ± std).  

category Number of 
subjects 

Age Years of 
Education 

MMSE ASAS- 
Cog 

AD 51 75.2 ±
7.4 

14.7 ± 3.6 23.8 ±
2.0 

18.3 ±
6.0 

NC 52 75.3 ±
5.2 

15.8 ± 3.2 29.0 ±
1.2 

7.4 ±
3.2 

MCI-C 43 75.8 ±
6.8 

16.1 ± 2.6 26.6 ±
1.7 

12.9 ±
3.9 

MCI-NC 56 74.7 ±
7.7 

16.1 ± 3.0 27.5 ±
1.5 

10.2 ±
4.3  

D. Lu et al.                                                                                                                                                                                                                                       

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/


Computers in Biology and Medicine 159 (2023) 106930

11

private pharmaceutical enterprises, and non-profit organizations. Its 
main goal is to test whether the progress of MCI and early AD can be 
measured by combining MRI, PET, other biomarkers, and clinical neu
ropsychological evaluation. The database contains data modalities, 
including MRI image data based on time series, PET image data, and 
other types of biomarker values, such as CSF, and some clinical neuro
psychological assessment scores, such as the mini-mental state exami
nation (MMSE) and the Alzheimer’s disease assessment scale-cognitive 
(ADAS-Cog). These data categories are mainly: patients with early AD, 
patients with mild cognitive impairment (MCI), and the cognitive 
normal control group (NC). While mild cognitive impairment (MCI) is 
usually considered an early stage of AD, which is a transition state from 
normal control (NC) to AD, especially late-stage MCI is likely to develop 
into AD. Therefore, MCI is generally divided into MCI converted to AD 
(MCI patients who will convert to AD, MCIc) and MCI not converted to 
AD (MCI patients who will not convert to AD, MCInc). The subjects of 
the ADNI database were recruited from 50 websites across the United 
States and Canada. Their initial goal was to recruit 800 adult volunteers, 
ranging in age from 55 to 90 years old. Among them, 200 were elderly 
people with normal cognition in the follow-up test for three consecutive 
years, 400 were patients with mild cognitive impairment in the follow- 
up test for three consecutive years, and 200 were patients with AD in the 
follow-up test for two consecutive years. The personal basic information 
of these subjects can be obtained from the official website of ADNI. 

In this paper, the sample data of subjects with MRI, PET, and CSF 

modalities are selected for the experiment, and only the data collected at 
the benchmark time point of these subjects are selected. In the Inter
national AD Database, 202 subjects have the above three modalities at 
the same time. Table 13 lists the demographic information of these 
subjects. 

6.2. Experimental setup and description 

This paper adopts a 10-fold cross-validation strategy to evaluate the 
classification performance of the proposed method. Specifically, the 
sample set is divided into 10 pieces on average, one of which is selected 
one by one as the test set, and the remaining 9 pieces are used as the 
training set. Calculate the features’ size, average accuracy, sensitivity, 
specificity, and F-measure of these 10 experiments as the experimental 
results of one division. Then randomly exchange the order of the sam
ples, divide the 10-fold cross validation once more, and calculate the 
features’ size, average accuracy, sensitivity, specificity, and F-measure. 
Repeat the division 10 times, and calculate the features’ size, average 
accuracy, sensitivity, specificity, and F-measure for these 10 divisions. 
The experiment adopts the two-class method (AD/MCI, AD/NC, and 
MCI/NC) to fully verify the influence of different classifications on the 
experimental results. 

In order to verify the performance of the method proposed in this 
paper for the diagnosis of early AD, it is compared with five classifica
tion methods that are also the same as the swarm intelligence optimi
zation algorithm combined with the FKNN classifier. 

6.3. Experimental results and discussion 

In order to verify the performance of the IBSSA-FKNN method pro
posed in this paper for early AD diagnosis, it is compared with other 
methods of swarm intelligence optimization combined with classifiers. 
The five classification methods are: a feature selection method based on 

Table 14 
Different methods classify AD/MCI, AD/NC, MCI/NC on multimodal data.  

AD vs. MCI 

Algorithm Features’ 
size 

ACC 
(%) 

SEN 
(%) 

SPE 
(%) 

PRE 
(%) 

F- 
measure 
(%) 

IBSSA- 
FKNN 

11.5 0.9537 0.99 0.9233 0.9627 0.9657 

BBA-FKNN 73.2 0.5608 0.6656 0.36 0.6696 0.6638 
BMFO- 

FKNN 
117 0.8803 0.9289 0.79 0.8999 0.9109 

QGDA- 
FKNN 

44.7 0.9533 0.98 0.86 0.9409 0.9574 

BQGWO- 
FKNN 

8.5 0.9667 0.9889 0.92 0.9642 0.9761 

BSCGWO- 
FKNN 

5.6 0.9667 0.97 0.94 0.9727 0.9747 

AD vs. NC 

IBSSA- 
FKNN 

11.4 1 1 1 1 1 

BBA-FKNN 76.5 0.8145 0.8 0.83 0.8223 0.8037 
BMFO- 

FKNN 
103.6 0.96 0.94 0.98 0.98 0.9578 

QGDA- 
FKNN 

32.3 0.97 0.98 0.96 0.9667 0.9707 

BQGWO- 
FKNN 

20.8 0.9909 0.98 1 1 0.9889 

BSCGWO- 
FKNN 

2.6 0.99 0.98 1 0.9817 0.9889  

MCI vs. NC 

IBSSA- 
FKNN 

27.3 0.9395 0.9789 0.94 0.9718 0.9555 

BBA-FKNN 76.5 0.7432 0.8 0.6367 0.8100 0.8024 
BMFO- 

FKNN 
103.6 0.8686 0.9089 0.79 0.8994 0.8970 

QGDA- 
FKNN 

39.3 0.9252 0.9478 0.88 0.9436 0.9437 

BQGWO- 
FKNN 

21.6 0.9354 0.9589 0.8567 0.9292 0.9527 

BSCGWO- 
FKNN 

5.8 0.9137 0.92 0.9067 0.9496 0.9314  

Table 15 
Sample size and classification results of AD prediction and diagnosis methods.  

references methods sample size Accuracy(%) 

Literature 
[49] 

SVM with Gaussian 
kernel 

Baseline MRI:198 
AD,409MCI(pMCI and 
sMCI), 231 NC 

Baseline MRI: 
AD vs. NC 
87.9% 
pMCI vs. NC 
83.2% 
pMCI vs. 
sMCI 70.4% 

Literature 
[50] 

Bagging algorithm and 
SVM 

56 AD, 60 MCI,60 NC AD vs. NC 
89%% 
MCI vs. NC 
72% 

Literature 
[51] 

deep full link network 
and stacked self- 
encoder 

65 AD,67 cMCI, 102 
ncMCI,77HC 

AD vs. HC 
87.76%% 
MCI vs. HC 
76.92% 

Literature 
[52] 

multi-instance 
learning techniques of 
graph 

198 AD,238 sMCI, 167 
pMCI，234 NC 

AD vs. NC 
88.8%% 
pMCI vs. 
sMCI 69.6% 

Literature 
[53] 

Independent 
Component Analysis 
(ICA) and SVM 

202 AD, 410 MCI, 236 
NC 

75% of data 
in training 
set: 
AD vs. NC 
78.4% 
MCI vs. NC 
71.2% 
90% of data 
in training 
set: 
AD vs. NC 
85.7%% 
MCI vs. NC 
79.2%  
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a binary bat algorithm combined with a fuzzy k-nearest neighbor clas
sifier; Feature selection method based on a binary Moth-Flame Opti
mization combined with a fuzzy k-nearest neighbor classifier; Feature 
selection method based on binary Gaussian discriminant analysis algo
rithm combined with fuzzy k-nearest neighbor classifier; And two 
feature selection methods based on binary improved grey wolf optimi
zation algorithm combined with a fuzzy k-nearest neighbor classifier. 

Table 14 shows the experimental results of the performance com
parison between the IBSSA-FKNN method and the other five methods on 
the concatenated multimodal data, respectively, for classifying AD/NC, 
AD/MCI, and MCI/NC. In Table 14, IBSSA-FKNN indicates that the bi
nary salp swarm algorithm is first used for feature selection, and then the 
FKNN classification model is used for classification experiments. Other 
methods are the same. Among them, all the experimental results listed in 
Table 14 are the average value of each index divided by 10 times of 10- 
fold cross-validation. 

The experimental results in Table 14 show that employing the 
feature selection step can improve the performance of the classification 
model in diagnosing early AD. The classification accuracy of IBSSA- 
FKNN method for AD and MCI, AD and NC, MCI and NC is 95.37%, 
100%, and 93.95%, respectively. From the six indicators of the three 
groups of classification results, the methods proposed in this paper are 
better than the other five methods. At the same time, the advantages of 
BQGWO-FKNN and BSCGWO-FKNN methods are also obvious, second 
only to IBSSA-FKNN method. In AD/NC and MCI/NC classification ex
periments, BSCGWO-FKNN method is superior to IBSSA-FKNN in 
selecting the number of feature subsets, but ranks first in other in
dicators. In the AD/MCI classification experiment, IBSSA-FKNN method 
is slightly lower than BQGWO-FKNN or BSCGWO-FKNN method in a 
certain index. The experimental results show that IBSSA-FKNN is still 
better than other methods in the 3 groups of classification experiments. 
Based on the experimental analysis results in Table 2 above, the 
following conclusions can be drawn: The FKNN feature selection method 
based on the Salp Swarm Algorithm proposed in this paper can signifi
cantly improve the classification performance of only using the FKNN 
classifier. Compared with other swarm intelligence methods combined 
with FKNN classifier, the method proposed in this paper improves 
various indicators such as classification accuracy, sensitivity and spec
ificity. Among them, the improvement of AD/MCI classification per
formance is particularly significant, and the combination of FKNN 
classifier can achieve higher classification performance, so the IBSSA- 
FKNN method proposed in this paper can be well applied to the diag
nosis of early AD. 

From another point, this paper analyzes the time consumption of 
different algorithms on AD classification, as shown in Fig. 9. It can be 
seen from the figure that the classification method proposed in this 
question takes a relatively long time. From the results of the above in
dicators, this method is superior to other methods in classification ac
curacy and other indicators. Next, I will continue to explore how to 
ensure accuracy while saving time. It takes longer than other classifi
cation techniques because of improvement approach 4, namely, the 
dimensional random difference mutation. Since this technique requires 
mutating each aspect of the individual and then judging and screening 
the outcomes. The blindness of the mutation process is certain to result 
in a decrease in the algorithm’s search efficiency and a considerable 
increase in the quantity of computation. This method, however, can 
cause the algorithm to deviate from the local optimum solution, boost
ing the accuracy of AD classification. 

In recent years, scholars have proposed many diagnostic algorithms 
for AD. Since these algorithms use different databases and different 
preprocessing methods, it is difficult to directly conduct comparative 
experiments. Therefore, relevant algorithms that perform well in 
different sample numbers are selected for comparison. Table 15 lists the 
sample size and classification results of each algorithm. Janoušová E 
et al. combined penalty regression data resampling to extract features 
and classify data by using SVM with Gaussian kernel [48]. 

Batmanghelich N et al. used Bagging algorithm and SVM for AD/NC 
classification, and logistic regression model using Boosting algorithm 
was used for MCI/NC classification [49]. Liu S et al. realized the diag
nosis and prediction of AD by using deep full link network and stacked 
self-encoder [50]. Tong T et al. used multi-instance learning techniques 
of graph to classify samples by extracting local density blocks as features 
[51]. Yang W et al. used Independent Component Analysis (ICA) for 
feature extraction and combines it with SVM algorithm for AD predic
tion [52]. 

7. Conclusion and future work 

In this study, we propose a FKNN feature selection method based on 
the binary salp swarm algorithm and apply this method to the early 
diagnosis of AD. First, on the datasets of BreastCancer, glass, hep
atitisfulldata, Lymphography, and WDBC obtained from the UCI Ma
chine Learning Repository, the effectiveness of this method is tested in 
terms of classification accuracy, sensitivity, and specificity and other 
aspects. Second, in order to verify the effectiveness of this method in the 
diagnosis of early AD, the multimodal feature data of MRI, PET and CSF 
from the international AD neuroimaging initiative (ADNI) were used 
and compared with other swarm intelligence algorithms combined with 
the FKNN classifier. The experimental results show that the proposed 
IBSSA-FKNN method is superior to the other five FKNN models based on 
swarm intelligence algorithms in various performance indicators and 
that can effectively improve the classification performance and the 
performance of early AD diagnosis. The promising application prospect 
will bring great convenience for clinicians to make better decisions in 
clinical diagnosis. 

On the one hand, future research will expand the suggested strategy 
to considerably bigger datasets. Second, the approach suggested in this 
study may be developed further to improve the AD classification impact. 
Next, I’ll aim to integrate deep learning with a swarm intelligence 
optimization method and apply it to the early detection of Alzheimer’s 
disease in order to accomplish AD classification. On the other hand, this 
work only focuses on a small quantity of labeled training data, although 
there is a large amount of unlabeled multimodal data accessible in clinic. 
Also, there are a considerable amount of incomplete multimodal data in 
clinic. Making full use of this incomplete multimodal labeled data may 
not only enhance the quantity of training samples, but also build 
learning methods for incomplete multimodal data, which can improve 
the model’s promotion performance. In a nutshell, the experiment gives 
a useful research idea and algorithm for the study of Alzheimer’s dis
ease, and it demonstrates that the swarm intelligence optimization al
gorithm has a positive influence on the early detection of Alzheimer’s 
disease. 
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[48] E. Janoušová, M. Vounou, R. Wolz, et al., Biomarker discovery for sparse 
classification of brain images in Alzheimer’s disease[J], Annals of the BMVA (2) 
(2012) 1–11. 

[49] N. Batmanghelich, B. Taskar, C. Davatzikos, A general and unifying framework for 
feature construction, in: Image-Based Pattern classification[C]//International 
Conference on Information Processing in Medical Imaging, vol. 5636, Springer, 
Berlin, Heidelberg, 2009, pp. 423–434. 

[50] S. Liu, S. Liu, W. Cai, et al., Early diagnosis of Alzheimer’s disease with deep 
learning[C], in: 2014 IEEE 11th International Symposium on Biomedical Imaging 
(ISBI), IEEE, 2014, pp. 1015–1018, 7. 

[51] T. Tong, R. Wolz, Q. Gao, et al., Multiple instance learning for classification of 
dementia in brain MRI[J], Med. Image Anal. 18 (5) (2014) 808–818. 

[52] W. Yang, R.L.M. Lui, J.H. Gao, et al., Independent component analysis-based 
classification of Alzheimer’s disease MRI data[J], J. Alzheim. Dis. 24 (4) (2011) 
775–783. 

D. Lu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0010-4825(23)00395-5/sref1
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref1
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref2
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref2
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref3
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref3
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref3
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref4
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref4
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref4
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref5
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref5
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref5
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref6
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref6
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref6
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref7
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref7
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref7
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref7
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref8
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref8
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref8
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref9
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref9
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref9
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref10
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref10
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref10
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref11
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref11
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref12
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref12
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref13
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref13
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref13
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref14
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref14
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref15
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref15
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref15
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref16
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref16
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref16
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref17
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref17
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref17
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref18
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref18
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref18
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref19
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref19
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref19
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref20
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref20
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref20
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref21
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref21
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref22
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref22
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref23
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref23
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref23
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref24
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref24
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref24
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref25
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref25
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref25
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref26
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref26
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref26
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref27
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref27
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref27
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref28
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref28
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref28
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref29
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref29
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref30
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref30
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref31
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref31
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref32
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref32
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref33
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref33
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref33
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref34
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref34
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref35
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref35
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref36
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref36
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref36
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref37
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref37
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref38
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref38
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref38
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref39
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref39
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref39
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref40
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref40
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref40
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref41
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref41
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref42
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref42
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref43
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref43
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref43
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref44
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref44
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref44
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref45
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref45
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref46
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref46
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref47
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref47
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref47
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref48
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref48
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref48
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref49
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref49
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref49
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref49
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref50
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref50
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref50
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref51
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref51
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref52
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref52
http://refhub.elsevier.com/S0010-4825(23)00395-5/sref52

	Effective detection of Alzheimer’s disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm
	1 Introduction
	2 Background materials
	2.1 Fuzzy K-nearest neighbors(FKNN)
	2.2 Salp swarm algorithm (SSA)

	3 Improved binary salp swarm algorithm (IBSSA)
	3.1 Population initialization strategy based on cubic chaotic map
	3.2 Binary mechanism
	3.3 Follower position updating strategy based on the variable helix mechanism
	3.4 Dimensional random difference mutation

	4 Proposed IBSSA-FKNN model
	5 Traditional data set experiment
	5.1 Dataset description
	5.2 Experimental setup and description
	5.3 Evaluation criteria
	5.4 Experimental results

	6 sMRI dataset experiment
	6.1 Dataset description
	6.2 Experimental setup and description
	6.3 Experimental results and discussion

	7 Conclusion and future work
	Data availability
	Declaration of competing interest
	Acknowledgments
	References


